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Abstract. Many engineering and scientific applications require a detailed analysis of
strongly coupled continuum transport and chemical reaction physics. These systems are
characterized by the co-existence of advection and diffusion time scales similar to those
occurring in typical flow problems, with very short time scales for non-equilibrium chem-
ical reactions. Accurate resolution of the reaction phase may require time-steps orders of
magnitude smaller than those normally used in the flow solver. In this paper we inves-
tigate the impact of such time-steps on stabilized mixed methods. We show that spatial
stabilization in conjunction with finite difference discretization in time leads to couplings
that may cause unstable and/or inaccurate approximations. A careful examination of the
fully discrete equations reveals that instability is caused by changes in the incompressibility
equation by terms that are needed to fulfill the consistency requirement.
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1 INTRODUCTION

Stabilized mixed finite element methods are in widespread use for the discretization of
the Navier-Stokes and related systems in both steady-state and time-dependent settings
[1, 2, 3, 9, 10, 15, 17, 18]. They are designed to circumvent the onerous inf-sup (or
LBB) condition [6, 11, 14] required of mixed finite element discretizations and, as a
result, they allow for the use of standard, piecewise continuous, finite element spaces of
equal-order and defined with respect to a single grid for both the pressure and velocity
approximations. For time-dependent problems, stabilized mixed finite element methods
are commonly defined through a process wherein the spatial and temporal discretization
steps are separated. Temporal discretization is effected by an implicit time discretization
algorithm, e.g., the backward Euler method. To discretize in space, a stabilized finite
element formulation that is designed to relax the continuity equation is applied. This
relaxation is accomplished either through residuals, leading to the class of consistently
stabilized methods ; see [1, 10, 15, 16], or by changing this equation directly as in [2, 3,
7, 9, 17, 18]. Here we focus on consistently stabilized methods that have proven to be
among the most popular stabilization techniques.

There is one situation in which consistently stabilized methods do not perform as well
as one would expect (e.g., relative to their performance for steady-state problems), namely
whenever the time-step is much smaller than the spatial grid size. There are at least two
settings in which one makes such a choice. First, in problems involving chemical reactions,
the size of the time-step is governed by the reaction rates and not by other considerations
such as accuracy. Thus, accuracy considerations would suggest the use of a relatively
large spatial grid size but a relatively smaller time-step is needed in order to account for
the stiffness due to the reactions. Second, temporal and spatial discretization algorithms
of disparate orders of accuracy require that the errors due to the two discretization steps
be balanced by choosing correspondingly disparate time-step and spatial grid sizes. The
following observations are very relevant to our study.

• Even for time-dependent problems, the stabilization methods in common use are
designed to relax a spatial constraint, namely the continuity equation. In fact,
the stabilization strategies employed in these methods are directly inherited from
successful stabilization strategies used for steady-state problems.

• Although the use of relatively small time-steps can result from the need to properly
resolve transients due to fast reactions, the resulting problems encountered with
stabilized methods are not directly due to the appearance of the reaction terms. As
a result, here, we need not consider problems that actually include such terms.

• Likewise, the nonlinear terms appearing in the Navier-Stokes system are not the
cause of the problems one encountered with relatively small time-steps. As a result
of this an the previous observation, it suffices for us to consider the time-dependent
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Stokes problem for the velocity u(x, t) and the pressure p(x, t):

∂u

∂t
−4u +∇p = f in Ω× (0, T ) (1)

∇ · u = 0 in Ω× (0, T ) (2)

u = 0 on Γ× (0, T ) (3)

u|t=0 = u0 in Ω, (4)

where Ω denotes a simply connected bounded region in Rn, n = 2, 3, with a suf-
ficiently smooth boundary Γ, (0, T ) with T > 0 the time interval of interest, and
f(x, t) and u0(x) are given functions.

One of our goals is to document, through computational experiments, the difficulties
that arise when one uses relatively small time-steps in consistently stabilized finite element
methods for the time-dependent Stokes problem. These experiments strongly suggest that,
in this setting, the velocity approximation is unaffected but the pressure approximation
is severely compromised.

2 NOTATIONS

We let Hd(Ω), ‖ · ‖d, and (·, ·)d with d ≥ 0 denote the Sobolev spaces consisting of
all functions with square integrable derivatives up to order d with respect to Ω, and the
standard Sobolev norm and inner product, respectively. Whenever d = 0, we will write
L2(Ω) instead of H0(Ω) and drop the index from the inner product designation. As usual,
H1

0 (Ω) = {v ∈ H1(Ω) | v = 0 on Γ} and L2
0(Ω) = {q ∈ L2(Ω) |

∫
Ω

qdΩ = 0}. Spaces of
vector valued functions are denoted by bold-face notations, e.g., H1(Ω) is the space of
vector-valued functions each of whose components belong to H1(Ω).

The symbol Sh
k denotes the space of continuous, piecewise polynomial functions of

degree k defined with respect to a regular triangulation Th of the domain Ω into finite
elements K; see [11]. For example, K can be a hexahedron or tetrahedron in three
dimensions or a triangle or quadrilateral in two dimensions.

3 MIXED AND STABILIZED GALERKIN DISCRETIZATION OF THE
TIME DEPENDENT STOKES PROBLEM

To effect discretization in the spatial variable, we first choose conforming finite element
subspaces Vh ⊂ H1

0(Ω) and P h ⊂ L2
0(Ω) for the velocity and pressure approximations,

respectively. Then, an (unstabilized) mixed finite element semi-discretization of (1)–(4)
is defined as follows [11, 14]: seek uh(·, t) ∈ Vh and ph(·, t) ∈ P h such that

(u̇h,vh) + G({uh, ph}, {vh, qh}) = (f ,vh) (5)(
uh(·, 0),vh

)
=

(
u0,v

h
)

(6)
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for all vh ∈ Vh, qh ∈ P h, and t ∈ (0, T ), where

G({uh, ph}, {vh, qh}) = (∇uh,∇vh)− (ph,∇ · vh)− (qh,∇ · uh) . (7)

If (Vh, P h) represents a pair of finite element spaces that satisfies the inf-sup condition,
then (5)–(6) is a stable problem. This problem is equivalent to the differential algebraic
equation (DAE) problem(

M U̇
0

)
+

(
A BT

B 0

)(
U
P

)
=

(
F
0

)
(8)

along with the initial condition determined from

MU(0) = U0 , (9)

where U(t) = (α1(t), . . . , αN(t)) and P (t) = (β1(t), . . . , βM(t)) are the vectors of unknown
coefficients corresponding to uh(x, t) and ph(x, t), respectively. The matrices M, A, and
B are defined in the usual manner from the terms in (5) and represent the (consistent)
mass, stiffness, and divergence matrices, the vectors F (t) and U0 are defined from the
source term f and the initial data u0, respectively.

The second equation of (8) (BU = 0) implies that the velocity is discretely divergence
free (or discretely solenoidal). The saddle-point system (8) is stable if and only if the
finite element spaces Vh and P h satisfy the inf-sup condition

inf
qh∈P h, qh 6=0

sup
vh∈Vh,vh 6=0

(qh,∇ · vh)

‖vh‖1‖qh‖0

≥ κ , (10)

where κ > 0 is independent of the grid size h; see, e.g., [6, 11, 14].
There are many pairs of finite element spaces (Vh, P h) for which it is known that the

inf-sup condition (10) holds. However, it is also known that piecewise polynomial velocity
and pressure approximating spaces of the same degree defined with respect to the same
grid do not satisfy (10); see [11, 14] for details. This is the main driving motivation for
developing stabilized finite element methods that are stable even when equal-order finite
element spaces defined with respect to the same grid are used.

3.1 Stabilized finite element method for the steady-state Stokes problem

Before we introduce stabilized spatial discretization for the time-dependent Stokes
problem (1)–(4), we review consistent spatial stabilization for the steady-state case:

−4u +∇p = f and ∇ · u = 0 in Ω and u = 0 on Γ . (11)

We choose a pair of (conforming) subspaces Vh ⊂ H1
0(Ω) and P h ⊂ L2

0(Ω), a pair
of weighting functions Wm(vh, qh) and Wc(v

h, qh), and a pair of discrete inner products
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< ·, · >m and < ·, · >c. Then, consistently stabilized finite element discretizations of the
steady-state Stokes problem (11) are defined as follows: seek uh ∈ Vh and ph ∈ P h such
that

G({uh, ph}, {vh, qh}) +
〈
Rm(uh, ph), Wm(vh, qh)

〉
m

+
〈
Rc(u

h, ph), Wc(v
h, qh)

〉
c
= (f ,vh)

(12)

for all vh ∈ Vh and qh ∈ P h, where

Rm(uh, ph)
∣∣∣
K

= −4uh +∇ph − f and Rc(u
h, ph)

∣∣∣
K

= ∇ · uh

are the momentum and continuity equation residuals; see (11). We restrict our attention
to the popular class of consistently stabilized methods for which

Wc(v
h, qh) = 0, Wm(vh, qh) = γ4vh −∇qh, and

〈
uh,vh

〉
m

=
∑
K∈Th

τK(uh,vh)K ,

where γ can take on the values ±1 or 0. Note that < ·, · >m is a “broken” L2 inner
product (broken into a sum of inner products over the individual elements) weighted by
the parameters τK. This results in the class of stabilized methods: seek uh ∈ Vh and
ph ∈ P h such that

G({uh, ph}, {vh, qh})−
∑
K∈Th

τK
(
−4uh +∇ph − f ,−γ4vh +∇qh

)
K = (f ,vh) (13)

for all vh ∈ Vh and qh ∈ P h. For γ = 1, 0,−1, the method (13) is respectively known as
the the Galerkin-least-squares [15], the pressure-Poisson stabilized Galerkin [16], and the
Douglas-Wang [10] methods; see also [1]. A typical definition for the parameters τK is

τK = δh2
K , (14)

where hK is a measure of the element size and δ > 0 is a stabilization parameter that is
independent of hK but whose values may be restricted in order to guarantee the stability
of the discrete problem (13); see [1, 15, 16].

3.2 Spatially stabilized discretizations of the time-dependent Stokes problem

To stabilize (5)–(6) spatially, we may modify G(·, ·) by adding the same terms as in
(13). However, if u is an unsteady solution of (5)–(6), then −4u + ∇p − f = −u̇ 6= 0
and so the modified equation will no longer be consistent. This difficulty can be easily
avoided by simply changing the stabilization term to

−
∑
K∈Th

τK
(
u̇h −4vh +∇ph − f ,−γ4vh +∇qh

)
K .
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The modified problem is: seek uh(·, t) ∈ Vh and ph(·, t) ∈ P h such that

(u̇h,vh)−
∑
K∈Th

τK
(
u̇h,−γ4vh +∇qh

)
K + G({uh, ph}, {vh, qh})

−
∑
K∈Th

τK
(
−4uh +∇ph − f ,−γ4vh +∇qh

)
K = (f ,vh)

(15)

(
uh(·, 0),vh

)
=
(
u0,v

h
)

(16)

for all vh ∈ Vh, qh ∈ P h, and t ∈ (0, T ). The semi-discrete problem (15)–(16) is consistent
and stable whenever the discrete steady-state problem (13) is stable [13].

Compared to the standard mixed Galerkin semi-discrete problem (5), the spatially
stabilized problem (15) contains additional terms. The role of the terms

−
∑
K∈Th

τK
(
−4uh +∇ph − f ,−γ4vh +∇qh

)
K (17)

is to stabilize the discretization with respect to the spatial variable, while the terms

−
∑
K∈Th

τK
(
u̇h,−γ4vh +∇qh

)
K (18)

are introduced to preserve consistency for transient solutions. We may write (15)–(16) as(
(M + γC̃) U̇

B̃ U̇

)
+

(
A− γÃ BT + γS̃T

−B− S̃ K̃

)(
U
P

)
=

(
F + γH̃

G̃

)
(19)

along with the initial condition determined from

MU(0) = U0 . (20)

The matrices M, A, and B have already been described; all (̃·) terms appearing in (19)
result from the stabilizing term (17) and the consistency term (18). Note that if we do

not add any stabilization, i.e., if τK = 0 for all K, then all (̃·) terms in (19) vanish and
that equation reduces, as it should, to (8).

4 TEMPORAL DISCRETIZATION

Here, for the sake of simplicity of exposition, we apply the θ-method (also called the
generalized trapezoidal rule) for this purpose. The interval (0, T ) is subdivided into K
intervals [tk, tk+1], k = 0, . . . , K − 1, having lengths ∆tk. We define F k = F (tk) and like-

wise for G̃ and H̃; uh,k, ph,k, Uk, and P k respectively denote approximations to uh(x, tk),
ph(x, tk), U(tk), and P (tk). The θ-method is then defined as follows: choose θ ∈ [0, 1]
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and let U0 = U(0), i.e., U0 is the solution of MU0 = U0; then, for k = 0, 1, . . . , K − 1,
determine Uk+1 and P k+1 from

1

∆tk
(M + γC̃)

(
Uk+1 − Uk

)
+
(
A− γÃ

)
Uk

θ +
(
BT + γS̃T

)
P k

θ = F k
θ + γH̃k

θ (21)

1

∆tk
B̃
(
Uk+1 − Uk

)
− BUk

θ − S̃Uk
θ + K̃P k

θ = G̃k
θ , (22)

where Uk
θ = θUk+1 +(1− θ)Uk and likewise for F k

θ , G̃k
θ , and H̃k

θ . There are other possible
generalizations of the θ-method for the heat equations to the case begin considered here.
For example, we could replace P k

θ in (21) and Uk
θ in (22) by P k+1 and Uk+1, respectively.

Altering the definition of the method given by (21)–(22) will not in any way change the
results of interest in this paper, so that it suffices to consider just one generalization of
the heat equation case.

For θ = 0, (21)–(22) reduces to the explicit forward-Euler method; for θ = 1, (21)–
(22) reduces to the implicit backward-Euler method; for θ = 1/2, (21)–(22) is a Crank-
Nicholson method. Clearly, (21)–(22) is a system of linear algebraic equations for the
unknown vectors of coefficients Uk+1 and P k+1:(

1
∆tk

(M + γC̃) + θA− γθÃ θBT + γθS̃T

1
∆tk

B̃− θB− θS̃ θK̃

)(
Uk+1

P k+1

)
=

(
F k

θ + γH̃k
θ

G̃k
θ

)

+

(
1

∆tk
(M + γC̃)− (1− θ)A + γ(1− θ)Ã −(1− θ)BT − γ(1− θ)S̃T

1
∆tk

B̃ + (1− θ)B + (1− θ)S̃ −(1− θ)K̃

)(
Uk

P k

)
.

(23)

4.1 Simplifications and solution of the discrete equations

We now introduce several simplifications into (23) that will allow us to not only more
easily examine the behaviors of that system in the limit of ∆tk → 0, but that will more
readily expose those behaviors. We remark that the same behaviors occur even without
these simplifications so that we do not loose any essential information by treating the
simplified system. First, because we are only considering single-step methods, we can set
∆tk = ∆t with the understanding that the value of ∆t may change from one time-step
to the next. Second, we choose γ = 0 so that we restrict considerations to the pressure-
Poisson stabilized Galerkin method. This, of course, results in being able to ignore several
terms in (23). Next, we set the stabilization parameter to the same value in all elements
K, i.e., we set τK = τ = δh2, where h is some overall measure of the grid size. This
allows several terms in (23) that involve the “broken” inner product

∑
K∈Th

τK(·, ·)K to
simplify to τ(·, ·). Next, we set θ = 1 so that we only consider the backward Euler method.
Finally, we use the same continuous piecewise polynomials of the same degree for both
the approximation of the pressure and velocity components. This is justified because one
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of the main reasons for using stabilized methods is to be able to use such combinations
of finite element spaces that are unstable for the Galerkin mixed methods. As a result of
these simplifications, (23) reduces to(

M + ∆tA ∆tBT

(τ −∆t)B− τ∆tS τ∆tK

)(
Uk+1

P k+1

)
=

(
M 0
τB 0

)(
Uk

P k

)
+ ∆t

(
F k+1

τGk+1

)
,

(24)
where Kij =

(
∇χh

j ,∇χh
i

)
, Sij =

∑
K∈Th

(
∆ξh

j ,∇χh
i

)
K , and (G)i =

(
f ,∇ξh

i

)
. A simple

but tedious calculation [4] shows that

Uk+1 = (M + ∆tA)−1

[
M− BT

(
τK + ĜBT

)−1(
ĜM + τB

)]
Uk

+∆t(M + ∆tA)−1

[
F k+1 − BT

(
τK + ĜBT

)−1(
ĜF k+1 + τGk+1

)]
,

(25)

for the velocity component, and by

∆tP k+1 =
(
τK + ĜBT

)−1[(
ĜM + τB

)
Uk + ∆tĜF k+1 + τ∆tGk+1

]
, (26)

for the pressure component, where

Â = M + ∆tA , Ĝ = ∆tBÂ−1 − τ(B−∆tS)Â−1 , D̂ = τ∆tK + ∆tĜBT . (27)

The symmetric, positive definite matrices M and A are invertible for any standard
choice of finite element spaces for the velocity approximation. As a result, the matrix
Â = M + ∆tA is likewise invertible. Therefore, the well posedness of the solution (26)–

(25) is totally reliant on the invertibility of the matrix (τK + ĜBT ).

4.2 The τ → 0 limit: the Galerkin mixed method

We first examine (26) and (25) in the limit τ → 0 or, more precisely, for ∆t and h
fixed, we let δ → 0. The discrete problem (24) reduces to(

M + ∆tA ∆tBT

∆tB 0

)(
Uk+1

P k+1

)
=

(
M 0
0 0

)(
Uk

P k

)
+ ∆t

(
F k+1

0

)
(28)

that, of course, is the discrete problem for the backward Euler/mixed Galerkin finite

element method. We have that Ĝ = ∆tBÂ−1 = ∆tB(M + ∆tA)−1 so that the solution
relations (25) and (26) respectively reduce to

Uk+1 = (M + ∆tA)−1

[
M−∆t−1BT

(
B(M + ∆tA)−1BT

)−1

∆tB(M + ∆tA)−1M
]
Uk

+∆t(M + ∆tA)−1

[
I−∆t−1BT

(
B(M + ∆tA)−1BT

)−1(
∆tB(M + ∆tA)−1

)]
F k+1

(29)
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and

P k+1 = ∆t−1
(
B(M + ∆tA)−1BT

)−1[
B(M + ∆tA)−1M + Uk

+∆tB(M + ∆tA)−1F k+1
]
.

(30)

We see that, in the mixed Galerkin case, the well posedness of the solution (29)–
(30) depends upon the uniform invertibility of the matrix B(M + ∆tA)−1BT . Given the
invertibility of M + ∆tA, we conclude that B(M + ∆tA)−1BT is invertible if and only if
the matrix B is of full row rank. This property is exactly implied by the inf-sup condition
(10) for the bilinear form b(·, ·). The uniform invertibility of B requires that the constant
in the inf-sup condition for b(·, ·) be bounded away from zero independently of the spatial
grid size h.

We now let ∆t � 1, subsequent to taking the τ → 0 limit. We then obtain Uk+1 =
(
I−M−1BT (BM−1BT )−1B

)
Uk + O(∆t)

P k+1 = ∆t−1
(
(BM−1BT )−1BM−1

)
MUk + O(1)

. (31)

4.3 The role of stabilization

Let us return to the exact solution (26)–(25) of the discrete stabilized equations. The
well posedness of that solution is dependent on the invertibility of the matrix

τK + ĜBT =

∆tB(M + ∆tA)−1BT + τK− τB(M + ∆tA)−1BT + τ∆tS(M + ∆tA)−1BT .
(32)

From (29)–(30), we see that the first term ∆tB(M+∆tA)−1BT in (32) is inherited from the
Galerkin mixed formulation. If one uses an unstable pair of finite element spaces, e.g.,
equal-order spaces defined with respect to the same grid for the velocity and pressure
approximations, then this matrix, although symmetric and positive semi-definite, is not
uniformly (with respect to h) invertible.

The second term τK is the stabilizing term; it arises from the pressure-Poisson type
stabilization term (∇ph,∇qh) in (15). Note that the matrix K is symmetric and positive
definite for any standard choice of finite element spaces for the pressure. As a result, the
combination

∆tB(M + ∆tA)−1BT + τK

is symmetric and positive definite for any choice of spaces for the velocity and pressure
approximations, including equal-order, same grid pairs. Thus, the τK term clearly effects
stabilization. This is the whole story with regards to stabilization that is not based
on residuals and only involves the addition of some kind of a pressure term directly to
the weak continuity constraint; see [2, 3, 7, 9, 17, 18]. For instance, [7] considers a
method where exactly the same pressure-Poisson term (∇ph,∇qh) is used to effect the
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stabilization. However, these scheme are inconsistent in the sense that the exact solution
of the Stokes problem does not satisfy the resulting equations.

The remaining terms in (32) appear in order to fulfill the consistency requirement. In
particular, the third term −τB(M+∆tA)−1BT arises from the consistency term (u̇h,∇qh)
in (15) and the fourth term τ∆tS(M + ∆tA)−1BT arises from the other consistency term
(∆uh,∇qh) in (15).

The term −τB(M+∆tA)−1BT is a destabilizing term and is of the same form, except for
having an opposite sign, as is the term arising from the mixed Galerkin method. Hence,
this term is a symmetric, negative semidefinite matrix. In fact, a closer inspection of
(32); see [4], reveals that one might get into trouble if τ is large compared to ∆t; since
τ = δh2, this indicates that trouble might occur if h2 is large with respect to ∆t. Thus, to
be safe, we would want to require that ∆t > Ch2; similar conclusions were drawn by the
authors in [5], and by other authors [2, 3], although the justification for this requirement is
much less transparent in these references that the one given here. It is important to note
that the destabilization term −τB(M + ∆tA)−1BT only appears in the time-dependent
setting (as noted above, it arises from the term (u̇h,∇qh) so that in steady-state settings
destabilization effects due to this term to not appear.

The effect of the τ∆tS(M + ∆tA)−1BT term in (32) is not crucial since it is of higher
order compared to −τB(M + ∆tA)−1BT . We do note that it corresponds to a (nonsym-
metric) discretization of −∆2 (a negative semidefinite operators) so that it certainly does
not provide any additional stabilization effects.

5 THE ∆t → 0 LIMIT FOR FIXED h

We now examine in more detail the topic of most interest to us: the behavior of
consistently stabilized methods as ∆t → 0 with the spatial grid size h remaining fixed so
that τ = δh2 remains fixed as well. As indicated in the discussion of the matrix in (32),
we can expect some difficulties in this situation. We now have that

τK + ĜBT = τ(K− BM−1BT ) + O(∆t)

and
ĜM + τB = ∆t

(
B + τS + τBM−1A + O(∆t)

)
so that (26) and (25) respectively yield

Uk+1 = Uk + O(∆t) (33)

and

P k+1 = τ−1(K− BM−1BT )−1BUk

+(K− BM−1BT )−1
[(

S + BM−1A
)
Uk − BM−1F k+1 + Gk+1

]
+ O(∆t) .

(34)
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Table 1: The τ → 0 limit. Errors after one implicit Euler step with ∆t = (∆t)1.

velocity pressure
δ L2 H1 H1

0.0005 0.41047E-04 0.40044E-02 0.56666E+00
0.00005 0.53300E-04 0.44985E-02 0.18235E+01
0.000005 0.57916E-04 0.46987E-02 0.12433E+02
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Figure 1: The τ → 0 limit: Stabilized method; ∆t = (∆t)1.

Equation (33) indicates that as ∆t → 0 with τ fixed, the velocity approximations are
stable, i.e., Uk+1 → Uk as ∆t → 0.

Equation (34) provides some questions concerning the stability and convergence of
pressure approximations. The first important question is the invertibility of the matrix
K − BM−1BT . As has already being pointed out, K is the symmetric, positive definite
Poisson (i.e., stiffness) matrix corresponding the pressure finite element space; BM−1BT

is the matrix arising in the mixed Galerkin method and, if we use an unstable pair of
approximating spaces (e.g., of equal-order and based on the same grid), it is a positive,
semidefinite (at least in an asymptotic sense as h → 0) matrix. Thus, it is totally unclear,
given a pair of finite element spaces for the velocity and pressure approximations, what
are the properties of the matrix K− BM−1BT . We note that this issue does not seem to
affect the stability of the velocity approximation, but may be relevant to the accuracy of
those approximations.

The first term on the right-hand side of (34) also deserves notice. Note the dependence
on the stabilization parameter τ = δh2. Thus, for a fixed grid size h, unless BUk = 0, the
solution for the discrete pressure will change if one changes the stabilization parameter.
In fact, even if BUk = O(h2), the discrete pressure will undergo an O(1) change as we
vary δ. In the next section, we explore these questions and observations through a series
of computational experiments.

11



Pavel B. Bochev, Max D. Gunzburger and Richard B. Lehoucq

Table 2: The ∆t → 0 limit: Taylor-Hood element.

velocity pressure
∆t L2 H1 L2

0.1 0.39334D-03 0.30349D-01 0.67770D-03
0.01 0.39244D-03 0.30349D-01 0.69915D-03
0.001 0.39239D-03 0.30352D-01 0.90321D-03
0.0001 0.39477D-03 0.30390D-01 0.15369D-02
0.00001 0.39665D-03 0.30439D-01 0.18965D-02
0.000001 0.39698D-03 0.30450D-01 0.66562D-01

Table 3: The ∆t → 0 limit: Stabilized method with δ = 0.05.

velocity pressure
∆t L2 H1 L2

0.1 0.54734E-04 0.36186E-02 0.44419E-02
0.01 0.54967E-04 0.36184E-02 0.49387E-02
0.001 0.55565E-04 0.36191E-02 0.99227E-02
0.0001 0.58893E-04 0.36983E-02 0.69373E-01
0.00001 0.55531E-04 0.39168E-02 0.47687E+00
0.000001 0.46465E-04 0.40049E-02 0.10385E+01

6 COMPUTATIONAL EXPERIMENTS

The main goal of this section is to determine to what extent very small time-steps
can cause numerical instabilities, or other anomalies in the stabilized mixed method.
According to (33) we can expect stable velocity approximations for all time-steps, while
pressure approximations may suffer because of the degradation of K − BM−1BT . We
also want to test pressure behavior for very small time-steps and a varying stabilization
parameter δ. Here, the goal is to test whether or not the discrete pressure undergoes a
change when δ is varied. We use piecewise cubic Lagrangian elements for the velocity, and
so BUk = O(h3). Pressure is approximated by a finite element space of the same order,
defined with respect to the same triangulation of the domain Ω into finite elements. We
recall that the resulting equal-order P3−P3 finite element pair does not satisfy the inf-sup
condition.

In all experiments Ω is the unit square in R2. We consider the fully discrete formulation
(21)-(22) with θ = 1 (implicit Euler) and γ = 0 (Pressure-Poisson spatial stabilization).
Then we take one time-step using the exact steady state solution

u =

(
sin(πx− 0.7) sin(πy + 0.2)
cos(πx− 0.7) cos(πy + 0.2)

)
;
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Figure 2: The ∆t → 0 limit: Taylor-Hood element. n = 1, 2, 3 (top) and n = 4, 5, 6 (bottom).
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Figure 3: The ∆t → 0 limit: Stabilized method with δ = 0.05. n = 1, 2, 3 (top) and n = 4, 5, 6 (bottom).
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Table 4: Stabilized method with varying δ and ∆t = (∆t)1.

velocity pressure
δ L2 H1 L2

5 0.23160E-02 0.39364E-01 0.96711E-01
0.5 0.22787E-03 0.46992E-02 0.13234E-01
0.05 0.54734E-04 0.36186E-02 0.44419E-02
0.005 0.35735E-04 0.36392E-02 0.23466E-02

Table 5: Stabilized method with varying δ and ∆t = (∆t)6.

velocity pressure
δ L2 H1 L2

5 0.85777E-04 0.41886E-02 0.81182E+01
0.5 0.55806E-04 0.40932E-02 0.19642E+01
0.05 0.46465E-04 0.40049E-02 0.10385E+01
0.005 0.38037E-04 0.40331E-02 0.14324E+01

p(x, y) = sin(x) cos(y) + (cos(1)− 1) sin(1)

to generate the initial condition in (4). The right hand side f is computed by evaluating
the momentum equation (1) for the exact solution. The new velocity approximation
is computed by (25) with U0 initialized by the finite element interpolant of the exact
velocity field. The new pressure is computed by (26). Note that an initial condition for
the pressure is not required for θ = 1. We use a uniform triangulation of Ω consisting
of 96 triangles. Each P3 triangle has 10 local nodes for a total of 484 different nodes in
the mesh. For this triangulation h ≈ 0.14 and h2 ≈ 0.02. All matrices in (25)-(26) are
assembled using a thirteen-point quadrature rule; see [8, p.343], and the linear system is
solved using a direct solver.

Our first experiment illustrates the τ → 0 limit discussed in Section 4.2. The objective
is to demonstrate an unstable mixed discretization of the Stokes problem as δ → 0. We
set ∆t = 0.1 and consider δk = 5× 10−k for k = 4, 5, 6 . Figure 1 shows increasing node-
to-node oscillations in the pressure approximations as δ approaches 0. The H1-seminorm
of the pressure is reported in Table 1 and also confirms the loss of stability in the δ → 0
limit.

The second experiment is designed to test the ∆t → 0 limit for fixed h and δ. We fix
δ = 0.05 and take (∆t)n = 10−n for n = 1, 2, 3, 4, 5, 6. This value of δ was found to give
the best pressure errors in the steady-state method (13); see [1]. The time-step selection
ensures that there are enough time-steps smaller than O(h2). To asses the impact of
small time-steps on the stabilized method we compute a reference finite element solution
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Figure 4: Stabilized method with δ = 5.0, 0.5 and 0.005. ∆t = (∆t)1.
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Figure 5: Stabilized method with δ = 5.0, 0.5 and 0.005. ∆t = (∆t)6.
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of the time-dependent Stokes problem (1)-(4) using the stable Taylor-Hood pair, the same
six values of ∆t, and h = 0.1. Figure 2 shows that with the exception of the smallest
time-step, all pressure contours are virtually identical. Deterioration of the finite element
solution in this case can be explained by observing that for (∆t)6, the fully discrete
equations can be interpreted as discretization of a singularly perturbed elliptic equation;
see [12]. The L2 pressure errors in Table 2 also experience only a slight deterioration for
the first five values of ∆t. From these results we can conclude that in a stable mixed
method the limit ∆t → 0 is not accompanied by serious degradation of the pressure
approximation, beyond what can be normally expected in the singularly perturbed limit.

The first row in Figure 3 shows that with the first three time-steps the stabilized method
also gives accurate pressure approximations. However, as the time-step becomes smaller
and smaller, Figure 3 shows a significant deterioration of the pressure approximation. The
L2 and H1 errors of the finite element solution for all six time-steps are reported in Table
3. This table shows that, as expected, velocity approximation does not suffer at all when
the time-step is being reduced. However, the L2 error in the pressure increases over several
orders of magnitude. We note that the most severe deterioration in the pressure occurs for
n = 4, 5, 6 when ∆t is orders of magnitude smaller than h2. In contrast, for n = 1, 2 the
time-step is of the same order as h2 and the pressure approximation is relatively stable.
These observations are consistent with the conclusions in Section 4.3 that trouble might
occur if h2 is large compared to ∆t.

Our last experiment investigates pressure behavior for fixed values of h and ∆t and a
varying stabilization parameter δ. We take δk = 5 × 10−k for k = 0, 1, 3 , and compute
the finite element solutions first with ∆t = 0.1 and then with ∆t = 0.000001. Pressure
approximations for the first time-step are shown in Figure 4. While for δ = 5 the pres-
sure approximation is not very good, all three solutions are qualitatively similar. This
assessment is confirmed by Table 4 which shows that L2 pressure errors improve when δ
is close to the optimal steady state value of 0.05.

However, repeating the same experiments with ∆t = 0.000001 shows a dramatic change
in the pressure behavior. Figure 5 shows three qualitatively different pressure approxima-
tions, and so confirms the conjecture from Section 5 that the discrete pressure will change
if one changes the stabilization parameter.

Dependence of discrete pressures on the value of δ would not be troublesome if not for
the fact that some of the pressure profiles in Figure 5 appear completely “legitimate”.
That is, they do not exhibit the strong node-to-node oscillations of the δ → 0 limit
that would have allowed us to rule them out as spurious. This will pose a problem in
simulations of, e.g., chemically reacting flows, where the goal is to accurately resolve the
non-equilibrium chemical reaction rather than to compute a steady state solution.

7 CONCLUSIONS

We have shown that fully discrete methods that employ finite difference discretization
in time and consistent inf-sup stabilized finite elements in space may experience diffi-
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culties in the small time-step limit. Problems in the small time-step limit for separated
discretizations of parabolic equations have been reported and analyzed in [12]. There, the
difficulties are caused by the singularly perturbed limit as ∆t → 0, and can be remedied
by application of stabilization of the same kind as used in problems with strong reaction
terms. In contrast, for the equations considered here, the origin of the difficulties in the
small ∆t limit is in the type of stabilization employed. In particular, we have demon-
strated that they are caused by the coupling of the velocity time derivative, needed to
fulfill the consistency requirement, with the weighting functions that define the spatial
stabilization.

These difficulties are manifested by pressure approximations that become dependent
on the values of the stabilization parameter δ as ∆t → 0. The absence of clear indicators
for spurious modes such as strong node-to-node oscillations, makes this type of behavior
especially difficult to identify. One possible remedy may be to use formulations based on
space-time finite elements. However, considering that the inf-sup condition is a purely
spatial constraint, a better and simpler strategy may be to employ direct modification of
the continuity equation as in [9], [17], or [18].

The problems and issues discussed in this paper are typical only for the small time-step
limit. For standard incompressible flow applications where excessively small time-steps
are not needed, the use of consistent spatial stabilization, in conjunction with an implicit
time integration, remains an attractive and viable alternative to mixed Galerkin methods.
This is particularly true if the main goal of the simulation is to compute a steady state
solution. However, for applications that require very small time-steps, such as chemically
reacting flows, one has to exercise an extreme caution when the time-step becomes smaller
than O(h2).
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